Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.852
Filtrar
1.
mBio ; 14(4): e0107323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530533

RESUMO

Fungal pathogens are increasingly appreciated as a significant infectious disease challenge. Compared to bacteria, fungal cells are more closely related to human cells, and few classes of antifungal drugs are available. Combination therapy offers a potential solution to reduce the likelihood of resistance acquisition and extend the lifespan of existing antifungals. There has been recent interest in combining first-line drugs with small-molecule adjuvants. In a recent article, Alabi et al. identified 1,4-benzodiazepines as promising molecules to enhance azole activity in pathogenic Candida spp. (P. E. Alabi, C. Gautier, T. P. Murphy, X. Gu, M. Lepas, V. Aimanianda, J. K. Sello, I. V. Ene, 2023, mBio https://doi.org/10.1128/mbio.00479-23). These molecules have no antifungal activity on their own but exhibited significant potentiation of fluconazole in azole-susceptible and -resistant isolates. Additionally, the 1,4-benzodiazepines increased the fungicidal activity of azoles that are typically fungistatic to Candida spp., inhibited filamentation (a virulence-associated trait), and accordingly increased host survival in Galleria mellonella. This research thus provides another encouraging step on the critical pathway toward reducing mortality due to antimicrobial resistance.


Assuntos
Azóis , Candida , Humanos , Candida/efeitos dos fármacos , Azóis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fenótipo
2.
Science ; 381(6657): 502-508, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535745

RESUMO

The mammalian gut secretes a family of multifunctional peptides that affect appetite, intestinal secretions, and motility whereas others regulate the microbiota. We have found that peptide YY (PYY1-36), but not endocrine PYY3-36, acts as an antimicrobial peptide (AMP) expressed by gut epithelial paneth cells (PC). PC-PYY is packaged into secretory granules and is secreted into and retained by surface mucus, which optimizes PC-PYY activity. Although PC-PYY shows some antibacterial activity, it displays selective antifungal activity against virulent Candida albicans hyphae-but not the yeast form. PC-PYY is a cationic molecule that interacts with the anionic surfaces of fungal hyphae to cause membrane disruption and transcriptional reprogramming that selects for the yeast phenotype. Hence, PC-PYY is an antifungal AMP that contributes to the maintenance of gut fungal commensalism.


Assuntos
Antifúngicos , Peptídeos Antimicrobianos , Candida , Celulas de Paneth , Fragmentos de Peptídeos , Peptídeo YY , Animais , Antifúngicos/metabolismo , Peptídeos Antimicrobianos/metabolismo , Candida/efeitos dos fármacos , Candida/fisiologia , Celulas de Paneth/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Simbiose , Humanos , Camundongos
3.
Emerg Infect Dis ; 29(3): 576-584, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823029

RESUMO

Candida haemulonii, a relative of C. auris, frequently shows antifungal resistance and is transmissible. However, molecular tools for genotyping and investigating outbreaks are not yet established. We performed genome-based population analysis on 94 C. haemulonii strains, including 58 isolates from China and 36 other published strains. Phylogenetic analysis revealed that C. haemulonii can be divided into 4 clades. Clade 1 comprised strains from China and other global strains; clades 2-4 contained only isolates from China, were more recently evolved, and showed higher antifungal resistance. Four regional epidemic clusters (A, B, C, and D) were identified in China, each comprising ≥5 cases (largest intracluster pairwise single-nucleotide polymorphism differences <50 bp). Cluster A was identified in 2 hospitals located in the same city, suggesting potential intracity transmissions. Cluster D was resistant to 3 classes of antifungals. The emergence of more resistant phylogenetic clades and regional dissemination of antifungal-resistant C. haemulonii warrants further monitoring.


Assuntos
Antifúngicos , Candida , Candidíase , Farmacorresistência Fúngica , Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candida/genética , Candidíase/tratamento farmacológico , Candidíase/genética , Candidíase/microbiologia , China , Testes de Sensibilidade Microbiana , Filogenia , Células Clonais , Farmacorresistência Fúngica/genética
4.
Microbiol Spectr ; 10(6): e0245322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445122

RESUMO

In recent decades, the incidence of Candida infections has increased in immunocompromised patients. This multicenter study aimed to evaluate in vitro antifungal activities of 8 antifungal agents against the Candida species isolated from 10 university hospitals in Iran. During the period from Dec 2019 to Dec 2021, Candida species were collected from clinical samples of patients. The isolates were identified by PCR restriction fragment length polymorphism and sequencing methods. The antifungal susceptibility tests of each isolate to eight antifungal agents were performed according to the microdilution CLSI M27, M59, and M60 standard methods. A total of 598 Candida strains were isolated from clinical samples. The most commonly isolated Candida species was C. albicans, followed by C. glabrata, C. parapsilosis, Debaryomyces hansenii (Candida famata), C. tropicalis, Pichia kudriavzevii (Candida krusei), C. orthopsilosis, Meyerozyma guilliermondii (Candida guilliermondii), Kluyveromyces marxianus (Candida kefyr), and Clavispora lusitaniae (Candida lusitaniae). MIC90 values in all Candida species were as follows: 0.25 µg/mL for caspofungin and voriconazole; 0.5 µg/mL for amphotericin B and isavuconazole; 2 µg/mL for itraconazole, luliconazole, and posaconazole; and 16 µg/mL for fluconazole. Although 30/285 C. albicans, 15/31 C. hansenii, 3/12 M. guilliermondii, 67/125 C. glabrata, 5/15 P. kudriavzevii, 6/60 C. parapsilosis, and 5/23 C. tropicalis isolates were multiazole resistant with resistance to 2 to 4 azoles, pan-azole resistance was not observed. According to our data, Candida albicans and C. glabrata were the most frequent species isolated from clinical samples in Iran. Caspofungin and voriconazole, with lower MIC90 values, are the most effective than other antifungal agents for the treatment of Candida infections in this region. IMPORTANCE Candida species cause severe invasive infections of the heart, brain, eyes, bones, and other parts of the body. Knowledge of regional distributions of causative Candida agents and their antifungal susceptibility patterns can help to monitor resistance to antifungal agents of various species and support local and national surveillance programs. In the present study, C. albicans and C. glabrata were the most frequently isolated species from clinical samples in Iran. Increasing rates of non-albicans Candida isolates from the Iranian population should be looked at as alarming due to various levels of intrinsic MIC values or resistance to various antifungal drugs. Caspofungin and voriconazole are recommended over fluconazole for the treatment of Candida infections in the study region. However, amphotericin B and isavuconazole are also active against the most common Candida species isolated from patients. Pan azole-resistant Candida species were not observed in the present study.


Assuntos
Antifúngicos , Candida , Candidíase , Humanos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Candida/efeitos dos fármacos , Candida albicans , Candida glabrata , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Candidíase/microbiologia , Caspofungina/farmacologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Irã (Geográfico)/epidemiologia , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Voriconazol/farmacologia
5.
Microbiol Spectr ; 10(6): e0296522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314941

RESUMO

To understand the changes of resistance in clinically commonly encountered fungi, we used the Antimicrobial Testing Leadership and Surveillance (ATLAS) database to explore in vitro antifungal susceptibilities against clinically important isolates of Aspergillus and Candida species (collected from intrapulmonary and sterile body areas, respectively). We applied the CLSI antifungal 2020 and the EUCAST antifungal 2020 guidelines. From 2017 to 2020, isolates of intrapulmonary Aspergillus fumigatus (n = 660), Aspergillus niger (n = 107), Aspergillus flavus (n = 96), Aspergillus terreus (n = 40), and Aspergillus nidulans species complex (n = 26) and sterile site-originated isolates of Candida albicans (n = 1,810), Candida glabrata (n = 894), Candida krusei (n = 120), Candida dubliniensis (n = 107), Candida lusitaniae (n = 82), Candida guilliermondii (n = 28), and Candida auris (n = 7) were enrolled in this study. Using the EUCAST 2020 breakpoints, it was demonstrated that amphotericin B and posaconazole displayed poor in vitro susceptibility rates against A. fumigatus isolates (<50% and 18.9%, respectively). In contrast, isavuconazole and itraconazole showed high in vitro potency against most Aspergillus isolates (>92%). Most intrapulmonary Aspergillus isolates exhibited MICs of ≤0.06 µg/mL to anidulafungin. Furthermore, intrapulmonary A. fumigatus isolates collected from Italy and the United Kingdom exhibited lower in vitro susceptibility to isavuconazole (72.2% and 69%, respectively) than those in the remaining ATLAS participant countries (>85%). Higher isavuconazole MIC90s against C. auris and C. guilliermondii (1 and 4 µg/mL, respectively) were observed compared to the other five Candida species. Despite the aforementioned MICs and susceptibilities against fungi, research needs to consider the pharmacokinetic (PK) profiles, pharmacodynamic (PD) parameters, and clinical treatment experience with antifungals against specific Aspergillus species. IMPORTANCE In addition to monitoring the antifungal susceptibilities of clinically important fungi, reviewing the PK/PD indices and the clinical therapy experience of antifungals under evaluation are important to guide an appropriate antifungal prescription. The efficacies of liposomal amphotericin B complex and anidulafungin for the treatment of pulmonary aspergillosis caused by different Aspergillus species need to be periodically evaluated in the future.


Assuntos
Antifúngicos , Aspergillus , Candida , Anidulafungina , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
6.
Acta Otolaryngol ; 142(9-12): 664-667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128634

RESUMO

BACKGROUND: Otomycosis is usually caused by Candida spp or Aspergillus spp. While Candida is usually multissensitive to available antifungals, Aspergillus is not. Topical antifungals for otomycosis that are available in Portugal are scarce, and systemic treatments have too many interactions and contraindications. OBJECTIVES: Determine otomycosis epidemiology, microbiology and treatment results. METHODS: Observational study that included patients followed in Professor Doutor Fernando Fonseca Hospital, between 2011 and 2020. Otomycosis diagnosis was obtained through ear drainage culture, and every case was treated with 1% clotrimazole ear drops plus ear cleaning once per week. RESULTS: Aspergillus was found in ear drainage culture in 43.9% of patients and Candida in the remaining. There was a significant statistical difference between patients with otomycosis caused by Aspergillus versus Candida in treatment duration from 25.0 days (16.5-43.0) versus 14.0 days (7.0-18.5) (p < .001), respectively. CONCLUSIONS: Otomycosis was more frequently caused by Candida, and this type of otomycosis is treated faster with clotrimazole 10 mg/dL plus ear cleaning, when compared with otomycosis by Aspergillus. SIGNIFICANCE: If otomycosis causative agent is identified or suspected, a prediction of the time needed till the resolution of otomycosis can be made, when clotrimazole ear drops are used.


Assuntos
Clotrimazol , Otomicose , Humanos , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/isolamento & purificação , Clotrimazol/farmacologia , Otomicose/tratamento farmacológico , Otomicose/microbiologia , Resultado do Tratamento , Candida/efeitos dos fármacos , Candida/isolamento & purificação
7.
J Enzyme Inhib Med Chem ; 37(1): 876-894, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35296203

RESUMO

With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of ß-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Desenho de Fármacos , Equinocandinas/farmacologia , Antifúngicos/química , Aspergillus/metabolismo , Candida/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Equinocandinas/química , Glucanos/antagonistas & inibidores , Glucanos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216181

RESUMO

Resistance to antifungal therapy of Candida albicans and non-albicans Candida strains, frequently associated with oral candidosis, is on the rise. In this context, host-defense peptides have emerged as new promising candidates to overcome antifungal resistance. Thus, the aim of this study was to assess the effectiveness against Candida species of different Catestatin-derived peptides, as well as the combined effect with serum albumin. Among Catestatin-derived peptides, the most active against sensitive and resistant strains of C. albicans, C. tropicalis and C. glabrata was the D-isomer of Cateslytin (D-bCtl) whereas the efficiency of the L-isomer (L-bCtl) significantly decreases against C. glabrata strains. Images obtained by transmission electron microscopy clearly demonstrated fungal membrane lysis and the leakage of the intracellular material induced by the L-bCtl and D-bCtl peptides. The possible synergistic effect of albumin on Catestatin-derived peptides activity was investigated too. Our finding showed that bovine serum albumin (BSA) when combined with the L- isomer of Catestatin (L-bCts) had a synergistic effect against Candida albicans especially at low concentrations of BSA; however, no synergistic effect was detected when BSA interacted with L-bCtl, suggesting the importance of the C-terminal end of L-bCts (GPGLQL) for the interaction with BSA. In this context in vitro D-bCtl, as well as the combination of BSA with L-bCts are potential candidates for the development of new antifungal drugs for the treatment of oral candidosis due to Candida and non-Candida albicans, without detrimental side effects.


Assuntos
Candidíase Bucal/tratamento farmacológico , Cromogranina A/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/metabolismo , Candidíase Bucal/metabolismo , Bovinos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Soroalbumina Bovina/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216270

RESUMO

Candida species are the most common fungal pathogens infecting humans and can cause severe illnesses in immunocompromised individuals. The increased resistance of Candida to traditional antifungal drugs represents a great challenge in clinical settings. Therefore, novel approaches to overcome antifungal resistance are desired. Here, we investigated the use of an antimicrobial peptide WMR against Candida albicans and non-albicans Candida species in vitro and in vivo. Results showed a WMR antifungal activity on all Candida planktonic cells at concentrations between 25 µM to >50 µM and exhibited activity at sub-MIC concentrations to inhibit biofilm formation and eradicate mature biofilm. Furthermore, in vitro antifungal effects of WMR were confirmed in vivo as demonstrated by a prolonged survival rate of larvae infected by Candida species when the peptide was administered before or after infection. Additional experiments to unravel the antifungal mechanism were performed on C. albicans and C. parapsilosis. The time-killing curves showed their antifungal activity, which was further confirmed by the induced intracellular and mitochondrial reactive oxygen species accumulation; WMR significantly suppressed drug efflux, down-regulating the drug transporter encoding genes CDR1. Moreover, the ability of WMR to penetrate within the cells was demonstrated by confocal laser scanning microscopy. These findings provide novel insights for the antifungal mechanism of WMR against Candida albicans and non-albicans, providing fascinating scenarios for the identification of new potential antifungal targets.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Sinergismo Farmacológico , Larva/microbiologia , Testes de Sensibilidade Microbiana/métodos
10.
Mar Drugs ; 20(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35200633

RESUMO

In this study, films of chitosan and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (6CN), a 2-aminothiophene derivative with great pharmacological potential, were prepared as a system for a topical formulation. 6CN-chitosan films were characterized by physicochemical analyses, such as Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). Additionally, the antifungal potential of the films was evaluated in vitro against three species of Candida (C. albicans, C. tropicalis, and C. parapsilosis). The results of the FTIR and thermal analysis showed the incorporation of 6CN in the polymer matrix. In the diffractogram, the 6CN-chitosan films exhibited diffraction halos that were characteristic of amorphous structures, while the micrographs showed that 6CN particles were dispersed in the chitosan matrix, exhibiting pores and cracks on the film surface. In addition, the results of antifungal investigation demonstrated that 6CN-chitosan films were effective against Candida species showing potential for application as a new antifungal drug.


Assuntos
Antifúngicos , Candida , Quitosana , Tiofenos , Administração Tópica , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos/química , Tiofenos/química
11.
Org Biomol Chem ; 20(5): 1031-1040, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35018938

RESUMO

An abundant sponge of the order Bubarida was selected for further chemical investigation following biological and chemical screening of sponges collected from Futuna Islands in the Indo-Pacific. Ten new nitrogenous bisabolene derivatives were isolated and identified: the monomeric theonellin formamide analogues named bubaridins A-F (1-6) with unusual oxidised linear chains, and the first isocyanide/formamide dimeric and cyclised bisabolenes 7-9. The structure elucidation of these nitrogenous bisabolenes involved HRESIMS, NMR, and ECD analyses, and the chiral compounds were found to be racemates. A biosynthetic hypothesis for the production of these metabolites is proposed and some chemotaxonomic considerations are discussed. Furthermore, the antimicrobial and antitumoral activity were evalutated and the trans-dimer theonellin isocyanide (7) was shown to exhibit potent and selective antifungal activity.


Assuntos
Antifúngicos/farmacologia , Cicloexilaminas/farmacologia , Sesquiterpenos Monocíclicos/farmacologia , Poríferos/química , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida/efeitos dos fármacos , Linhagem Celular Tumoral , Cicloexilaminas/síntese química , Cicloexilaminas/isolamento & purificação , Humanos , Ilhas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/isolamento & purificação , Oceano Pacífico
12.
Microbiol Spectr ; 10(1): e0087321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019680

RESUMO

The limited number of available effective agents necessitates the development of new antifungals. We report that jervine, a jerveratrum-type steroidal alkaloid isolated from Veratrum californicum, has antifungal activity. Phenotypic comparisons of cell wall mutants, K1 killer toxin susceptibility testing, and quantification of cell wall components revealed that ß-1,6-glucan biosynthesis was significantly inhibited by jervine. Temperature-sensitive mutants defective in essential genes involved in ß-1,6-glucan biosynthesis, including BIG1, KEG1, KRE5, KRE9, and ROT1, were hypersensitive to jervine. In contrast, point mutations in KRE6 or its paralog SKN1 produced jervine resistance, suggesting that jervine targets Kre6 and Skn1. Jervine exhibited broad-spectrum antifungal activity and was effective against human-pathogenic fungi, including Candida parapsilosis and Candida krusei. It was also effective against phytopathogenic fungi, including Botrytis cinerea and Puccinia recondita. Jervine exerted a synergistic effect with fluconazole. Therefore, jervine, a jerveratrum-type steroidal alkaloid used in pharmaceutical products, represents a new class of antifungals active against mycoses and plant-pathogenic fungi. IMPORTANCE Non-Candida albicans Candida species (NCAC) are on the rise as a cause of mycosis. Many antifungal drugs are less effective against NCAC, limiting the available therapeutic agents. Here, we report that jervine, a jerveratrum-type steroidal alkaloid, is effective against NCAC and phytopathogenic fungi. Jervine acts on Kre6 and Skn1, which are involved in ß-1,6-glucan biosynthesis. The skeleton of jerveratrum-type steroidal alkaloids has been well studied, and more recently, their anticancer properties have been investigated. Therefore, jerveratrum-type alkaloids could potentially be applied as treatments for fungal infections and cancer.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Parede Celular/metabolismo , Fungos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Veratrum/química , beta-Glucanas/metabolismo , Alcaloides/isolamento & purificação , Antifúngicos/isolamento & purificação , Candida/efeitos dos fármacos , Candida/genética , Candida/metabolismo , Parede Celular/efeitos dos fármacos , Fungos/genética , Fungos/metabolismo , Humanos , Micoses/microbiologia , Extratos Vegetais/isolamento & purificação
13.
Microbiol Spectr ; 10(1): e0200721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019705

RESUMO

In the present study, in vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles, including itraconazole, voriconazole, posaconazole and fluconazole, against a variety of pathogenic fungi were investigated. A total of 69 isolates were studied via broth microdilution checkerboard technique, including 23 isolates of Aspergillus spp., 20 isolates of Candida spp., 9 isolates of Cryptococcus neoformans complex, and 17 isolates of Exophiala dermatitidis. The results revealed that AZD8055 individually did not exert any significant antifungal activity. However, synergistic effects between AZD8055 and itraconazole, voriconazole or posaconazole were observed in 23 (33%), 13 (19%) and 57 (83%) isolates, respectively, including azole-resistant A. fumigatus strains and Candida spp., potentiating the efficacy of azoles. The combination effect of AZD8055 and fluconazole was investigated against non-auris Candida spp. and C. neoformans complex. Synergism between AZD8055 and fluconazole was observed in six strains (60%) of Candida spp., resulting in reversion of fluconazole resistance. Synergistic combinations resulted in 4-fold to 256-fold reduction of effective MICs of AZD8055 and azoles. No antagonism was observed. In vivo effects of AZD8055-azole combinations were evaluated by survival assay in Galleria mellonella model infected with A. fumigatus strain AF002, E. dermatitidis strain BMU00038, C. auris strain 383, C. albicans strain R15, and C. neoformans complex strain Z2. AZD8055 acted synergistically with azoles and significantly increased larvae survival (P < 0.05). In summary, the results suggested that AZD8055 combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. IMPORTANCE Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy. The target of rapamycin (TOR), a conserved serine/threonine kinase from yeast to humans, participates in a signaling pathway that governs cell growth and proliferation in response to nutrient availability, growth factors, and environmental stimuli. AZD8055 is an orally bioavailable, potent, and selective TOR kinase inhibitor that binds to the ATP binding cleft of TOR kinase and inhibits both TORC1 and TORC2. Synergism between AZD8055 and azoles suggested that the concomitant application of AZD8055 and azoles may help to enhance azole therapeutic efficacy and impede azole resistance. TOR inhibitor with fungal specific target is promising to be served as combination regimen with azoles.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Fungos/efeitos dos fármacos , Morfolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aspergillus , Candida/efeitos dos fármacos , Candida albicans , Farmacorresistência Fúngica/efeitos dos fármacos , Exophiala/efeitos dos fármacos , Humanos , Itraconazol , Testes de Sensibilidade Microbiana , Sirolimo/farmacologia , Triazóis , Voriconazol
14.
J Med Chem ; 65(3): 2361-2373, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084852

RESUMO

When used in combination with azole antifungal drugs, cyclooxygenase (COX) inhibitors such as ibuprofen improve antifungal efficacy. We report the conjugation of a chiral antifungal azole pharmacophore to COX inhibitors and the evaluation of activity of 24 hybrids. Hybrids derived from ibuprofen and flurbiprofen were considerably more potent than fluconazole and comparable to voriconazole against a panel of Candida species. The potencies of hybrids composed of an S-configured azole pharmacophore were higher than those with an R-configured pharmacophore. Tolerance, defined as the ability of a subpopulation of cells to grow in the presence of the drug, to the hybrids was lower than to fluconazole and voriconazole. The hybrids were active against a mutant lacking CYP51, the target of azole drugs, indicating that these agents act via a dual mode of action. This study established that azole-COX inhibitor hybrids are a novel class of potent antifungals with clinical potential.


Assuntos
Antifúngicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Fluconazol/farmacologia , Antifúngicos/síntese química , Candida/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 51 do Citocromo P450/antagonistas & inibidores , Ergosterol/antagonistas & inibidores , Fluconazol/síntese química , Testes de Sensibilidade Microbiana , Estereoisomerismo
15.
Eur J Med Chem ; 228: 113972, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772530

RESUMO

With the increase of fungal infection and drug resistance, it is becoming an urgent task to discover the highly effective antifungal drugs. In the study, we selected the key ergosterol bio-synthetic enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) as dual-target receptors to guide the construction of novel antifungal compounds, which could achieve the purpose of improving drug efficacy and reducing drug-resistance. Three different series of amide naphthyl compounds were generated through the method of skeleton growth, and their corresponding target products were synthesized. Most of compounds displayed the obvious biological activity against different Candida spp. and Aspergillus fumigatus. Among of them, target compounds 14a-2 and 20b-2 not only possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125-2 µg/mL), but also maintained the anti-drug-resistant fungal activity (MIC50, 1-4 µg/mL). Preliminary mechanism study revealed the compounds (14a-2, 20b-2) could block the bio-synthetic pathway of ergosterol by inhibiting the dual-target (SE/CYP51) activity, and this finally caused the cleavage and death of fungal cells. In addition, we also discovered that compounds 14a-2 and 20b-2 with low toxic and side effects could exert the excellent therapeutic effect in mice model of fungal infection, which was worthy for further in-depth study.


Assuntos
Amidas/farmacologia , Antifúngicos/farmacologia , Inibidores Enzimáticos/farmacologia , Naftalenos/farmacologia , Esqualeno Mono-Oxigenase/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Amidas/síntese química , Amidas/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Esqualeno Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 227: 113950, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34731761

RESUMO

Ergosterol exert the important function in maintaining the fluidity and osmotic pressure of fungal cells, and its key biosynthesis enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) displayed the obvious synergistic effects. Therefore, we expected to discover the novel antifungal compounds with dual-target (SE/CYP51) inhibitory activity. In the progress, we screened the different kinds of potent fragments based on the dual-target (CYP51, SE) features, and the method of fragment-based drug discovery (FBDD) was used to guide the construction of three different series of benzodioxane compounds. Subsequently, their chemical structures were synthesized and evaluated. These compounds displayed the obvious biological activity against the pathogenic fungal strains. Notably, target compounds 10a-2 and 22a-2 possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125-2.0 µg/mL) and the activity against drug-resistant strains (MIC50, 0.5-2.0 µg/mL). Preliminary mechanism studies have confirmed that these compounds effectively inhibited the dual-target (SE/CYP51) activity, they could cause fungal rupture and death by blocking the bio-synthetic pathway of ergosterol. Further experiments discovered that compounds 10a-2 and 22a-2 also maintained a certain of anti-fungal effect in vivo. In summary, this study not only provided the new dual-target drug design strategy and method, but also discover the potential antifungal compounds.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Derivados de Benzeno/farmacologia , Candida/efeitos dos fármacos , Dioxanos/farmacologia , Esterol 14-Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/síntese química , Antifúngicos/química , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Candida/metabolismo , Dioxanos/síntese química , Dioxanos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 55: 128453, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801684

RESUMO

In this study, a series of bis- and tetrakis-1,2,3-triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73-95% yield. The bis- and tetrakis-1,2,3-triazoles exhibited significant DNA cleavage activity while the tetrakis-1,2,3-triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis-1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis-1,2,3-triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis-1,2,3-triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis-1,2,3-triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Candida/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Picratos/antagonistas & inibidores , Plasmídeos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
18.
Clin Microbiol Infect ; 28(1): 140.e1-140.e4, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34619396

RESUMO

OBJECTIVES: Ibrexafungerp is a new oral glucan synthase inhibitor with in vivo and in vitro activity against Candida spp., including echinocandin- and azole-resistant isolates. We studied the in vitro activity of ibrexafungerp against Candida species isolated from blood cultures and assessed wild-type upper limits against the five Candida species most frequently associated to candidaemia. METHODS: Isolates (n = 958) causing incident episodes of candidaemia in patients admitted to Gregorio Marañón hospital (Madrid, Spain) between January 2007 and April 2021 were studied. Antifungal susceptibility to ibrexafungerp, fluconazole, micafungin and anidulafungin was tested (EUCAST E.Def 7.3.2) and wild-type upper limits determined against C. albicans (n = 462), C. glabrata (n = 120), C. parapsilosis (n = 249), C. tropicalis (n = 73) and C. krusei (n = 24). fksgene sequencing was carried out in non-wild-type isolates. RESULTS: Ibrexafungerp showed antifungal in vitro activity against the studied isolates. Wild-type upper limits for ibrexafungerp were >0.25 mg/L against C. albicans, >1 mg/L against C. parapsilosis, C. glabrata, and C. tropicalis, and >2 mg/L against C. krusei. Percentages of ibrexafungerp non-wild-type isolates were low (C. parapsilosis and C. krusei, 0%; C. albicans, 0.22% (1/462); C. glabrata, 0.83% (1/120); and C. tropicalis, 1.37% (1/73)). Ibrexafungerp proved in vitro activity against fluconazole- or echinocandin-resistant isolates. DISCUSSION: We show in vitro activity of ibrexafungerp against the tested Candida species. Furthermore, we provide ibrexafungerp wild-type upper limits, which allows defining the wild-type populations of the five most relevant Candida species.


Assuntos
Antifúngicos , Candida , Glicosídeos/farmacologia , Triterpenos/farmacologia , Antifúngicos/farmacologia , Hemocultura , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidemia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Fluconazol , Humanos , Testes de Sensibilidade Microbiana
19.
Bauru; s.n; 2022. 17 p. ilus, tab.
Tese em Português | CONASS, Sec. Est. Saúde SP, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP, SESSP-ESPECIALIZACAOSESPROD, Sec. Est. Saúde SP | ID: biblio-1367829

RESUMO

As onicomicoses são doenças causadas por fungos que acometem a pele, unhas e pelos, existindo diferentes formas clínicas e ocasionado por diversos agentes etiológicos. Os agentes causadores mais frequentes das onicomicoses são classificados como dermatófitos, não dermatófitos e leveduras. Dentre as leveduras destaca-se os fungos do gênero Candida, caracterizada como leveduriforme, em condições normais se apresentam como colonizantes, comensais e são consideradas oportunistas. A Candida albicans é a levedura mais comum de ser encontrada e está possui relatos de resistência ao fluconazol. A presença desta resistência representa um grande desafio terapêutico, pela escassez de alternativas no tratamento. Por conta disso muitas pessoas acabam optando por métodos alternativos para o controle deste tipo de infecção, um exemplo seria a aplicação de óleos essenciais naturais puros com ação combatente de microrganismos. O óleo essencial de Melaleuca, teve atividade antifúngica relatada por vários estudos usando diversas combinações de compostos originados da planta, mas sua aplicação mais comum é do óleo puro diluído. Porém os estudos aprofundando do quanto este composto possui de ação bactericida e antifúngica, comparados a medicamentos sintéticos, são escassos, mas sabe-se que com o uso frequente e correto do óleo ocasiona uma ação satisfatória. Objetivo geral foi descrever o efeito do óleo de Melaleuca sobre amostras de Candida albicans (ATT 90028) e Candida krusei (ATT 6258) comparando ao uso de Fluconazol.Método: Foi desenvolvida uma pesquisa qualitativa de caráter exploratório do uso tópico do óleo de Melaluca sobre Candida albicans (ATT 90028) e Candida krusei (ATT 6258) comparando com o antifúngico Fluconazol em método de difusão de disco.Os halos formados nos testes foram positivos para o Fluconazol, já para o óleo essencial de Melaleuca não constatando que a comparação por igual não é válida.


Onychomycosis are diseases caused by fungi that affect the skin, nails and hair, with different clinical forms and caused by different etiological agents. The most frequent causative agents of onychomycosis are classified as dermatophytes, non-dermatophytes and yeasts. Among the yeasts, the fungi of the genus Candida stand out, characterized as yeast, under normal conditions they present themselves as colonizers, commensals and are considered opportunistic. Candida albicans is the most common yeast to be found and has been reported to be resistant to fluconazole. The presence of this resistance represents a major therapeutic challenge, due to the scarcity of alternatives in the treatment. Because of this, many people end up opting for alternative methods to control this type of infection, an example would be the application of pure natural essential oils with microorganism-fighting action. Melaleuca essential oil has had antifungal activity reported by several studies using various combinations of compounds originating from the plant, but its most common application is as a diluted pure oil. However, the in-depth studies of how much this compound has bactericidal and antifungal action, compared to synthetic drugs, are scarce, but it is known that with the frequent and correct use of the oil it causes a satisfactory action. General objective was to describe the effect of Melaleuca oil on samples of Candida albicans (ATT 90028) and Candida krusei (ATT 6258) comparing to the use of Fluconazole. Method: A qualitative exploratory research was carried out on the topical use of Melaluca oil on Candida albicans (ATT 90028) and Candida krusei (ATT 6258) comparing it with the antifungal Fluconazole in a disc diffusion method. The halos formed in the tests were positive for Fluconazole, as for the essential oil of Melaleuca, not finding that the comparison is not valid.


Assuntos
Candida/efeitos dos fármacos , Fluconazol/uso terapêutico , Óleo de Melaleuca/uso terapêutico , Onicomicose/terapia
20.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885791

RESUMO

The aliphatic heterocycles piperidine and morpholine are core structures of well-known antifungals such as fenpropidin and fenpropimorph, commonly used as agrofungicides, and the related morpholine amorolfine is approved for the treatment of dermal mycoses in humans. Inspired by these lead structures, we describe here the synthesis and biological evaluation of 4-aminopiperidines as a novel chemotype of antifungals with remarkable antifungal activity. A library of more than 30 4-aminopiperidines was synthesized, starting from N-substituted 4-piperidone derivatives by reductive amination with appropriate amines using sodium triacetoxyborohydride. Antifungal activity was determined on the model strain Yarrowia lipolytica, and some compounds showed interesting growth-inhibiting activity. These compounds were tested on 20 clinically relevant fungal isolates (Aspergillus spp., Candida spp., Mucormycetes) by standardized microbroth dilution assays. Two of the six compounds, 1-benzyl-N-dodecylpiperidin-4-amine and N-dodecyl-1-phenethylpiperidin-4-amine, were identified as promising candidates for further development based on their in vitro antifungal activity against Candida spp. and Aspergillus spp. Antifungal activity was determined for 18 Aspergillus spp. and 19 Candida spp., and their impact on ergosterol and cholesterol biosynthesis was determined. Toxicity was determined on HL-60, HUVEC, and MCF10A cells, and in the alternative in vivo model Galleria mellonella. Analysis of sterol patterns after incubation gave valuable insights into the putative molecular mechanism of action, indicating inhibition of the enzymes sterol C14-reductase and sterol C8-isomerase in fungal ergosterol biosynthesis.


Assuntos
Antifúngicos/farmacologia , Ergosterol/metabolismo , Fungos/efeitos dos fármacos , Piperidinas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/metabolismo , Descoberta de Drogas , Fungos/metabolismo , Humanos , Mucorales/efeitos dos fármacos , Mucorales/metabolismo , Micoses/tratamento farmacológico , Micoses/metabolismo , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...